[tex] \rm{Lim_{x\to5}{ (\: {x}^{2} - x! + 9)}} \: + \: Lim_{x\to2}{(3x - {x}^{2} + \frac{10}{x})}[/tex]
Lim (x² - x! + 9)
x → 5
+
Lim (3x - x² + 10/x)
x → 2
(5² - 5! + 9) + (3(2) - 2²+ 10/2)
= (5(5) - (5.4.3.2.1) + 9) + (3(2) - 2(2) + 5)
= (5(5) - (20.3.2.1) + 9) + (3(2) - 2(2) + 5)
= (5(5) - (60.2.1) + 9) + (3(2) - 2(2) + 5)
= (5(5) - (120.1) + 9) + (3(2) - 2(2) + 5)
= (25 - 120 + 9) + (6 - 4 + 5)
= (-95 + 9) + (2 + 5)
= -86 + 7
= -79
:)
– - – - – - –
Lim (x² - x! + 9) + Lim ( 3x - x² + 10/x)
x → 5 x → 2
(5² - 5! + 9) + (3(2) - 2² + 10/2)
= (5(5) - 5(4)(3)(2)(1) + 9) + (3(2) - 2(2) + 10/2)
= (5(5) - 5(4)(3)(2) + 9) + (3(2) - 2(2) + 10/2)
= (5(5) - 5(4)(6) + 9) + (3(2) - 2(2) + 10/2)
= (5(5) - 5(24) + 9) + (3(2) - 2(2) + 10/2)
= (25 - 120 + 9) + (6 - 4 + 5)
= (25 - 111) + (6 + 1)
= -86 + 7
= -79
– - – - – - –
[answer.2.content]